A Randomized Rounding Algorithm for Sparse PCA

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Randomized Rounding Algorithm for the Asymmetric Traveling Salesman Problem

We present an algorithm for the asymmetric traveling salesman problem on instances which satisfy the triangle inequality. Like several existing algorithms, it achieves approximation ratio O(log n). Unlike previous algorithms, it uses randomized rounding.

متن کامل

Sparse PCA by iterative elimination algorithm

In this paper we proposed an iterative elimination algorithm for sparse principal component analysis. It recursively eliminates variables according to certain criterion that aims to minimize the loss of explained variance, and reconsiders the sparse principal component analysis problem until the desired sparsity is achieved. Two criteria, the approximated minimal variance loss (AMVL) criterion ...

متن کامل

An efficient algorithm for rank-1 sparse PCA

Sparse principal component analysis (PCA) imposes extra constraints or penalty terms to the original PCA to achieve sparsity. In this paper, we introduce an efficient algorithm to find a single sparse principal component with a specified cardinality. The algorithm consists of two stages. In the first stage, it identifies an active index set with desired cardinality corresponding to the nonzero ...

متن کامل

Geometric rounding: a dependent randomized rounding scheme

We develop a new dependent randomized rounding method for approximation of a number of optimization problems with integral assignment constraints. The core of the method is a simple, intuitive, and computationally efficient geometric rounding that simultaneously rounds multiple points in a multi-dimensional simplex to its vertices. Using this method we obtain in a systematic way known as well a...

متن کامل

Fault-Tolerant Facility Location: A Randomized Dependent LP-Rounding Algorithm

We give a new randomized LP-rounding 1.725-approximation algorithm for the metric Fault-Tolerant Uncapacitated Facility Location problem. This improves on the previously best known 2.076-approximation algorithm of Swamy & Shmoys. To the best of our knowledge, our work provides the first application of a dependent-rounding technique in the domain of facility location. The analysis of our algorit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Transactions on Knowledge Discovery from Data

سال: 2017

ISSN: 1556-4681,1556-472X

DOI: 10.1145/3046948